If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3s2 + 10s + 6 = 0 Reorder the terms: 6 + 10s + 3s2 = 0 Solving 6 + 10s + 3s2 = 0 Solving for variable 's'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 2 + 3.333333333s + s2 = 0 Move the constant term to the right: Add '-2' to each side of the equation. 2 + 3.333333333s + -2 + s2 = 0 + -2 Reorder the terms: 2 + -2 + 3.333333333s + s2 = 0 + -2 Combine like terms: 2 + -2 = 0 0 + 3.333333333s + s2 = 0 + -2 3.333333333s + s2 = 0 + -2 Combine like terms: 0 + -2 = -2 3.333333333s + s2 = -2 The s term is 3.333333333s. Take half its coefficient (1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. 3.333333333s + 2.777777779 + s2 = -2 + 2.777777779 Reorder the terms: 2.777777779 + 3.333333333s + s2 = -2 + 2.777777779 Combine like terms: -2 + 2.777777779 = 0.777777779 2.777777779 + 3.333333333s + s2 = 0.777777779 Factor a perfect square on the left side: (s + 1.666666667)(s + 1.666666667) = 0.777777779 Calculate the square root of the right side: 0.881917104 Break this problem into two subproblems by setting (s + 1.666666667) equal to 0.881917104 and -0.881917104.Subproblem 1
s + 1.666666667 = 0.881917104 Simplifying s + 1.666666667 = 0.881917104 Reorder the terms: 1.666666667 + s = 0.881917104 Solving 1.666666667 + s = 0.881917104 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + s = 0.881917104 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + s = 0.881917104 + -1.666666667 s = 0.881917104 + -1.666666667 Combine like terms: 0.881917104 + -1.666666667 = -0.784749563 s = -0.784749563 Simplifying s = -0.784749563Subproblem 2
s + 1.666666667 = -0.881917104 Simplifying s + 1.666666667 = -0.881917104 Reorder the terms: 1.666666667 + s = -0.881917104 Solving 1.666666667 + s = -0.881917104 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + s = -0.881917104 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + s = -0.881917104 + -1.666666667 s = -0.881917104 + -1.666666667 Combine like terms: -0.881917104 + -1.666666667 = -2.548583771 s = -2.548583771 Simplifying s = -2.548583771Solution
The solution to the problem is based on the solutions from the subproblems. s = {-0.784749563, -2.548583771}
| z-12=8z | | (X-2)2=0 | | 7x-13=4x+14 | | -5-[2+5y-3(y+2)]=-9(2y-5)-[2(y-1)-3y+3] | | -5w+20=-5(w-4) | | -5y-36=3(4y+5) | | 40-(-2)[8-3(-1)]= | | 5946=894+x | | 6(x-1)+67=x-3(x+1) | | 0=q+4 | | 5w+28=0 | | x=364/y | | 3x-1=4x+7-x | | 0=-40sin(2t)-60cos(2t) | | x*y=364 | | 0=-5v+30 | | 8-(-6)(4-7)= | | 18=.2127(x)+15.91 | | -8x-4x=16-4 | | 6x^2-x=7 | | 8/5v=6 | | 10n+9n-7=8 | | ln(K/0.005)=39400/8.314(1/373-1/488) | | 15=w-13 | | 16s^2+24s=9 | | a^2-ax+3ax+6a^2-ax+3a^2= | | 6k-3k=-6k+4k | | 2y+-1y+9=5.9 | | 6k-3k=6k+4k | | 936=28x/100 | | f(x)=ln(tan(2x)) | | 5x+2y=600 |